Sains Malaysiana 54(1)(2025): 131-150
http://doi.org/10.17576/jsm-2025-5401-11
Angiogenesis Effects of Dental Stem Cells
Cultured on Polymer Scaffolds
(Kesan Angiogenesis Sel Stem Pergigian yang
Dibiakkan pada Perancah Polimer)
NUR NAJMI MA1¶,
NOOR HASILA AD1&, FAZREN AZMI3&,
THANAPHUM OSATHANON4&, ROHAYA
MEGAT ABDUL WAHAB2& & FARINAWATI YAZID2,*¶
1Programme of Biomedical Science, Centre of
Toxicology & Health Risk Studies, Faculty of Health Sciences, Universiti
Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Discipline of
Pediatric Dentistry, Department of Family Oral Health, Faculty of Dentistry,
Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur,
Malaysia
3Faculty of Pharmacy, Universiti Kebangsaan Malaysia, 50300 Kuala
Lumpur, Malaysia
4Dental Stem Cell Biology Research Unit, Department of Anatomy,
Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
Diserahkan: 20
Februari 2024/Diterima: 6 November 2024
¶These authors contributes equally to this work
&These authors contribute equally to this
work
Abstract
Following the PRISMA-ScR guidelines, three electronic
databases were searched (PubMed, Scopus and Web of Science) to
identify the related studies using specific keywords and terms. The abstracts
were evaluated for inclusion and exclusion criteria. The included publications
were descriptively analysed. Out of 296 articles found, only
nine were included for analysis. The objective of this study was to assess the
angiogenesis effects of dental stem cells cultured in a polymer scaffold by
evaluating their ability to promote blood vessel formation, cell viability, and
tissue regeneration, thereby providing insights into their potential
therapeutic applications in regenerative medicine. Previous
studies mainly focused on polymer scaffold research, neglecting the crucial
aspect of angiogenesis in pulp regeneration. Despite DPSCs' versatility in bone
regeneration, more research is needed to understand their relationship with
angiogenesis. The untapped potential of DPSCs in promoting blood vessel
formation and tissue regeneration requires further exploration. Limited
investigation exists on how the combination of stem cell, angiogenic, and
dentin markers affects angiogenesis in DPSCs. The morphological changes DPSCs
undergo in scaffold environments and the gene/protein expression analyses in
DPSCs on scaffolds with angiogenic factors are areas that still need
exploration. This research gap holds promise for enhanced understanding and advancement in tissue engineering and regenerative medicine,
particularly in DPSCs' connection with scaffolds and angiogenesis. There
has been limited research on the interplay of DPSCs, polymer scaffolds, and
angiogenesis, with unexplored combined consequences on tissue regeneration.
Scaffold-based techniques to investigate angiogenesis with DPSCs are uncommon.
Further research might transform tissue engineering and regenerative medicine,
spanning beyond dentistry.
Keywords:
Angiogenesis; dental pulp stem cells; dentinogenesis; scaffold
Abstrak
Mengikut
garis panduan PRISMA-ScR, tiga pangkalan data elektronik (PubMed, Scopus dan
Web of Science) telah dicari untuk mengenal pasti kajian berkaitan menggunakan
kata kunci dan istilah tertentu. Abstrak dinilai untuk kriteria kemasukan dan
pengecualian. Penerbitan yang terpilih telah dianalisis secara deskriptif.
Daripada 296 artikel yang diperoleh, hanya sembilan diterima untuk analisis.
Objektif kajian ini adalah untuk menilai kesan angiogenesis sel stem pergigian
yang dikultur dalam perancah polimer dengan menilai keupayaan mereka untuk
menggalakkan pembentukan saluran darah, daya tahan sel dan penjanaan semula
tisu, seterusnya memberikan pandangan tentang potensi aplikasi terapeutik
mereka dalam perubatan regeneratif. Kajian terdahulu tertumpu terutamanya pada
penyelidikan perancah polimer, mengabaikan aspek penting angiogenesis dalam
penjanaan semula pulpa. Walaupun DPSC serba boleh dalam penjanaan semula
tulang, lebih banyak penyelidikan diperlukan untuk memahami hubungan mereka
dengan angiogenesis. Potensi DPSC yang belum diterokai dalam menggalakkan
pembentukan saluran darah dan penjanaan semula tisu memerlukan penerokaan
lanjut. Penyelidikan terhad wujud tentang bagaimana gabungan penanda sel stem,
angiogenik dan dentin mempengaruhi angiogenesis dalam DPSC. Perubahan morfologi
yang dialami DPSC dalam persekitaran perancah dan analisis ekspresi gen/protein
dalam DPSC pada perancah dengan faktor angiogenik masih memerlukan penerokaan.
Jurang penyelidikan ini menjanjikan pemahaman dan kemajuan yang lebih baik
dalam kejuruteraan tisu dan perubatan regeneratif, terutamanya dalam hubungan
DPSC dengan perancah dan angiogenesis. Penyelidikan yang terhad mengenai
interaksi DPSC, perancah polimer dan angiogenesis serta tiada penerokaan
mengenai penggabungan semua faktor ini dalam penjanaan semula tisu. Teknik
berasaskan perancah untuk mengkaji angiogenesis dengan DPSC jarang berlaku.
Justeru, penyelidikan lanjut mungkin mengubah kejuruteraan tisu dan perubatan
regeneratif pergigian.
Kata kunci:
Angiogenesis; dentinogenesis; perancah; sel stem pulpa pergigian
RUJUKAN
Adair, T.H. & Montani, J.P. 2011. Overview of angiogenesis. Angiogenesis. Morgan & Claypool Life Sciences.
Ahmed, S., Gan, H.K., Chen, F.L., Anuradha, P., Ramasamy, S., Tay, Y., Tham,
M. & Yu, Y.H. 2009. Transcription
factors and neural stem cell self-renewal, growth and differentiation. Cell Adh. Migr. 3(4): 412-424.
Akwii, R.G., Sanaullah, S., Fatema, T.Z. & Mikelis, C.M. 2019. Role of angiopoietin-2 in vascular
physiology and pathophysiology. Cells 8(5): 471.
Alfonso, B.F. & Al-Rubeai, M. 2011. Flow cytometry. In Comprehensive Biotechnology (Third Edition), edited by Moo-Young, M. Pergamon. pp. 541-560.
Allah, N.U.M., Berahim, Z., Ahmad, A.
& Ponnuraj, K.T. 2020. Effect of FGF-2 and PDGF-BB on a co-culture of human gingival fibroblasts
and umbilical vein endothelial cells. Sains Malaysiana 49(8): 1865-1874.
Alvarez-Barrientos, A., Arroyo, J., Cantón, R., Nombela, C. & Sanchez-Perez, M. 2000. Applications of flow cytometry
to clinical microbiology. Clin. Microbiol. Rev. 13(2): 167-195.
Andrae, J., Gallini, R. & Christer, B. 2008. Role of platelet-derived growth factors in physiology and medicine. Genes Dev. 22(10): 1276-1312.
Antonino, P., Kleinman, H.K. & Martin, G.R. 2021. Matrigel: History/background, uses, and future
applications. J. Cell
Commun. Signal. 16(4): 621-626.
Azar, D.T. 2016. Corneal angiogenic privilege:Angiogenic and antiangiogenic factors in corneal
avascularity, vasculogenesis, and wound healing. Transactions of the
American Ophthalmological Society 104: 264-302.
Baptista, P.M., Moran, E.C., Vyas, D., Shupe, T.
& Soker, S.2014. Liver regeneration and bioengineering: The role of liver extra-cellular matrix
and human stem/progenitor cells. In Regenerative Medicine Applications in
Organ Transplantation, edited by Orlando, G., Lerut, J., Soker, S. &
Stratta, R.J. Massachusetts: Academic Press. pp. 391-400.
Bar, J., Lis-Nawara, A. & Piotr, G. 2021. Dental pulp stem cell-derived secretome and
its regenerative potential. International Journal of Molecular Sciences 22(21): 12018-12018.
Baru, O., Nutu, A., Braicu, C., Cismaru, C.A., Berindan-Neagoe, I., Buduru, S. & Badea, M. 2021. Angiogenesis
in regenerative dentistry: Are we far enough for therapy? Int. J. Mol. Sci. 22(2): 929.
Cabral-Pacheco, G.A., Garza-Veloz, I., Castruita-De la Rosa, C., Ramirez-Acuña, J.M., Perez-Romero, B.A., Guerrero-Rodriguez, J.F., Martinez-Avila, N.
& Martinez-Fierro, M.L. 2020. The roles of matrix metalloproteinases and their inhibitors in human
diseases. Int. J. Mol. Sci. 21(24): 9739.
Cao, R., Anna, F.E., Kubo, H., Alitalo, K., Cao, Y. & Thyberg, J. 2004. Comparative evaluation of FGF-2–, VEGF-A–,
and VEGF-C–induced angiogenesis, lymphangiogenesis, vascular fenestrations, and
permeability. Circulation Research 94(5): 664-670.
Carmeliet, P. & Jain, R.K. 2011. Molecular mechanisms and
clinical applications of angiogenesis. Nature 473(7347): 298-307.
Cavalcanti, B.N., Zeitlin, B.D.
& Nör, J.E. 2013. A hydrogel scaffold that
maintains viability and supports differentiation of dental pulp stem cells. Dental Materials 29(1): 97-102.
Chan, B.P. & Leong, K.W. 2008. Scaffolding
in tissue engineering: General approaches
and tissue-specific considerations. European Spine Journal 17(S4): 467-479.
DeCicco-Skinner, K.L., Henry, G.H., Cataisson, C., Tabib, T., Gwilliam, J.C., Watson, N.J., Bullwinkle, E.M., Falkenburg, L., O'Neill, R.C., Morin, A. & Wiest, J.S. 2014. Endothelial cell tube formation assay for the in
vitro study of angiogenesis. J. Vis. Exp. 91: e51312. Demarco, F.F., Conde, M.C., Cavalcanti, B.N., Casagrande, L., Sakai, V.T.
& Nör, J.E. 2011. Dental pulp tissue engineering. Braz. Dent. J. 22(1): 3-13.
Deng, W.S., Ma, K., Liang,
B., Liu, X.Y., Xu, H.Y., Zhang, J., Shi, H.Y., Sun, H.T., Chen, X.Y.
& Zhang, S. 2020. Collagen scaffold
combined with human umbilical cord-mesenchymal stem cells transplantation for
acute complete spinal cord injury. Neural Regen. Res.15(9): 1686-1700.
Diana, R., Ardhani, R., Kristanti, Y.
& Santosa, P. 2020. Dental pulp stem cells
response on the nanotopography of scaffold to regenerate dentin-pulp complex
tissue. Regen. Ther. 15: 243-250.
Dissanayaka, W.L., Hargreaves, K.M., Jin, L., Samaranayake, L.P. & Zhang, C. 2015. The
interplay of dental pulp stem cells and endothelial cells in an injectable
peptide hydrogel on angiogenesis and pulp regeneration in vivo. Tissue
Engineering Part A. 21(3-4): 550-563.
Divband, B., Pouya, B., Hassanpour, M., Alipour, M., Salehi,
R., Rahbarghazi, R., Shahi, S., Aghazadeh, Z. & Aghazadeh, M. 2022. Towards induction of angiogenesis in dental pulp stem cells using
chitosan-based hydrogels releasing basic fibroblast growth factor. BioMed
Research International 2022: 5401461.
Dudley, A.C. & Griffioen, A.W. 2023. Pathological angiogenesis: Mechanisms and therapeutic strategies. Angiogenesis 26(3): 313-347.
Farinawati Yazid, Nur Atmaliya Luchman, Rohaya Megat Abdul Wahab, Shahrul Hisham Zainal Ariffin &
Sahidan Senafi. 2018. Proliferation and
osteoblast differentiation mice dental pulp stem cells between enzyme digestion
and outgrowth method. Sains Malaysiana 47(4): 691-698.
Ferro, F., Spelat, R. & Baheney, C.S. 2014. Dental
pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods
in Molecular Biology 1210: 91-115.
Galler, K.M., Weber, M., Korkmaz, Y., Widbiller, M. & Feuerer, M. 2021. Inflammatory response mechanisms of the dentine–pulp
complex and the periapical tissues. Int. J. Mol. Sci. 22(3): 1480.
Galler, K.M., Hartgerink, J.D., Cavender, A., Schmalz, G. & D’Souza, R.N. 2012. A customized self-assembling
peptide hydrogel for dental pulp tissue engineering. Tissue Engineering Part
A 18(1-2): 176-184.
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., Mitchell, C., Alitalo, K., Shima, D. & Betsholtz, C. 2003. VEGF guides angiogenic sprouting utilizing endothelial tip cell
filopodia. Journal of Cell Biology 161(6): 1163-1177.
Gharaei, M.A., Xue, Y., Mustafa, K., Lie, S.A. & Fristad, I. 2018. Human dental pulp stromal cell conditioned medium
alters endothelial cell behavior. Stem Cell Research & Therapy 9:
69.
Goldberg, M., Kulkarni, A.B., Young, M.F. & Boskey, A.L. 2011. Dentin structure composition
and mineralization. Front
Biosci. (Elite Ed) 3(2): 711-735.
Guerrero, P.A. & McCarty, J.H. 2017. TGF-β activation and signaling in
angiogenesis. In Physiologic and
Pathologic Angiogenesis - Signaling Mechanisms and Targeted Therapy, edited by Simionescu, D. & Simionescu, A. InTech. doi:10.5772/66405
Guo, B. & Ma, P.X. 2014. Synthetic
biodegradable functional polymers for tissue engineering: A brief review. Sci. China Chem. 57(4): 490-500.
Hagar, M.N., Yazid, F., Luchman, N.A., Ariffin, S.H.Z. & Wahab, R.M.A.
2021. Comparative
evaluation of osteogenic differentiation potential of stem cells derived from
dental pulp and exfoliated deciduous teeth cultured over granular
hydroxyapatite based scaffold. BMC Oral Health 21(1):
263.
Hilkens, P., Gervois, P., Fanton, Y., Vanormelingen, J., Martens, W., Struys, T., Politis, C., Lambrichts, I. & Bronckaers, A. 2013. Effect of isolation methodology on stem cell properties and multilineage
differentiation potential of human dental pulp stem cells. Cell Tissue Res. 353(1): 65-78.
Huang, X., Wang, F., Zhao, C., Yang,
S.,
Cheng, Q., Tang, Y., Zhang, F., Zhang, Y., Luo, W., Wang, C., Zhou, P., Kim, S., Zuo, G., Hu, N., Li, R., He, T.C.
& Zhang, H. 2019. Dentinogenesis and tooth-alveolar bone complex defects
in BMP9/GDF2 knockout mice. Stem Cells Dev. 28(10): 683-694.
Iannace, S., Sorrentino, L. & Di Maio, E. 2014. Biodegradable
biomedical foam scaffolds. In Biomedical
Foams for Tissue Engineering Applications, edited by Netti, P.A. Woodhead
Publishing. pp. 163-187.
Islam, Z., Ali, A.M., Naik,
A.,
Mohamed, A.E., Decock, J. & Kolatkar, P.R. 2021. Transcription factors: The fulcrum between cell development and
carcinogenesis. Frontiers in Oncology https://doi.org/10.3389/fonc.2021.681377
Jia, T., Jacquet, T., Dalonneau, F., Coudert, P., Vaganay, E., Exbrayat-Héritier, C., Vollaire, J., Josserand, V.,
Ruggiero, F., Coll, J-L. & Eymin, B. 2021. FGF-2 promotes angiogenesis
through a SRSF1/SRSF3/SRPK1-dependent axis that controls VEGFR1 splicing in
endothelial cells. BMC
Biology 19: 173.
Johnson, K.E. & Wilgus, T.A. 2014. Vascular endothelial growth factor and angiogenesis in
the regulation of cutaneous wound repair. Adv. Wound Care (New Rochelle)3(10): 647-661.
Kandhwal, M., Behl, T., Singh, S., Sharma, N., Arora, S., Bhatia, S., Al-Harrasi, A., Sachdeva, M.
& Bungau, S. 2022. Role of matrix metalloproteinase in wound healing. American
Journal of Translational Research 14(7): 4391-4405.
Kashyap, V., Rezende, N.C., Scotland, K.B., Shaffer, S.M., Persson, J.L., Gudas,
L.J. & Mongan, N.P. 2009. Regulation of stem cell pluripotency and
differentiation involves a mutual regulatory circuit of the NANOG, OCT4,
and SOX2 pluripotency transcription factors with polycomb repressive
complexes and stem cell microRNAs. Stem Cells Dev. 18(7): 1093-1108.
Kelley, M.E., Fierstein, S.R., Purkey, L. & DeCicco-Skinner, K.L. 2022. Endothelial cell tube
formation assay: An in vitro model for angiogenesis. Methods
Mol. Biol. 2475: 187-196.
Kenakin, T.P. 2019. The drug discovery process. A Pharmacology Primer: Techniques for More
Effective and Strategic Drug Discovery. 5th ed. London: Academic Press. pp. 323-371. https://doi.org/10.1016/b978-0-12-813957-8.00011-4
Kennedy, D.C., Wheatley, A.M. & McCullagh, K.J.A. 2022. VEGF-A and FGF4 engineered C2C12 myoblasts and angiogenesis in the
chick chorioallantoic membrane. Biomedicines 10(8): 1781.
Khanna, A., Zamani, M. & Huang, N.F. 2021. Extracellular matrix-based biomaterials for
cardiovascular tissue engineering. Journal of Cardiovascular Development and
Disease 8(11): 137.
Kim, W.T. & Ryu, C.J. 2017. Cancer stem cell
surface markers on normal stem cells. BMB Rep.50(6): 285-298.
Kumar, V., Vashishta, M., Kong, L., Wu, X., Lu, J.J., Guha, C. & Dwarakanath, B.S. 2021. The role of notch, hedgehog, and wnt signaling pathways in the
resistance of tumors to anticancer therapies. Front Cell Dev. Biol. 9: 650772.
Kuntze, M.M., Mendes Souza, B.D., Schmidt, T.F., de Almeida, J., Bortoluzzi, E.A.
& Felippe, W.T. 2020. Scanning electron microscopy evaluation of dentin ultrastructure after
surface demineralization. J. Conserv. Dent. 23(5): 512-517.
Kwak, K.H.
& Lee, H.W. 2022. Clinical potential of dental
pulp stem cells in pulp regeneration: Current endodontic progress and future
perspectives. Frontiers in Cell and Developmental Biology 10: 857066.
La Noce, M., Paino, F., Spina, A., Naddeo, P., Montella, R., Desiderio, V., De Rosa, A., Papaccio, G., Tirino, V.
& Laino, L. 2014. Dental pulp stem cells: State of the art and
suggestions for a true translation of research into therapy. Journal of
Dentistry 42(7): 761-768.
Lamalice, L., Le Boeuf, F. & Huot, J. 2007. Endothelial cell migration during angiogenesis. Circulation
Research 100(6): 782-794.
Ledesma-Martínez, E., Mendoza-Núñez, V.M.
& Santiago-Osorio, E. 2016. Mesenchymal stem cells derived
from dental pulp: A review. Stem Cells Int. 2016: 4709572.
Levac, D., Colquhoun, H. & O’Brien, K.K. 2010. Scoping studies: Advancing the methodology. Implementation
Science 5: 69.
Li, Y., Zhao, L. & Li, X-F. 2021. Hypoxia and the tumor microenvironment. Technol. Cancer Res. Treat. 20: 15330338211036304.
Liu, M., Zhao, L., Hu, J., Wang, L., Li, N., Wu, D., Shi, X., Yuan, M., Hu, W. & Wang, X. 2018. Endothelial cells and endothelin‑1
promote the odontogenic differentiation of dental pulp stem cells. Molecular
Medicine Reports 18(1): 893-901.
Luo, L., Xing, Z., Liao,
X., Li, Y., Luo, Y., Ai, Y., He, Y. & Ye, Q. 2022. Dental pulp stem cells‐based therapy for the oviduct injury via immunomodulation and
angiogenesis in vivo. Cell Proliferation 55(10):
e13293.
Lv, F-J., Tuan, R.S., Cheung,
K.M.C. & Leung, V.Y.L. 2014. Concise review: The surface
markers and identity of human mesenchymal stem cells. Stem Cells 32(6): 1408-1419.
Magaki, S., Hojat, S.A., Wei, B., So, A. & Yong, W.H. 2018. An
introduction to the performance of immunohistochemistry. Methods Mol. Biol. 1897: 289-298.
Mahmood, T. & Yang, P-C. 2012. Western
blot: Technique, theory, and trouble shooting. N. Am. J. Med. Sci.4(9): 429-434.
Mangano, C., Paino, F., d’Aquino, R., De Rosa, A., D.R., Iezzi, G., Piattelli, A., Laino, L., Mitsiadis, T., Desiderio,
V., Mangano, F., Papaccio, G. & Tirino, V. 2011. Human dental pulp
stem cells hook into biocoral scaffold forming an engineered biocomplex. PLoS ONE 6(4): e18721.
Marrelli, M., Codispoti, B., Shelton, R.M., Scheven, B.A., Cooper, P.R., Tatullo, M.
& Paduano, F. 2018. Dental pulp stem cell
mechanoresponsiveness: Effects of
mechanical stimuli on dental pulp stem cell behavior. Frontiers in
Physiology 9: 1685.
Marwa, T., Rosellini, E., Niccoletta, B., Maria, G.C., Rai, R., Guillaume, S.P. & Boccaccini, A.R. 2015. Strategies for the chemical and biological
functionalization of scaffolds for cardiac tissue engineering: A review. Journal of the Royal Society
Interface 12(108): 20150254.
Mastrullo, V., Cathery, W., Eirini, V., Paolo, M. & Campagnolo, P. 2020. Angiogenesis in tissue
engineering: As nature intended? Frontiers in Bioengineering and
Biotechnology 8: 188.
Mattei, V., Martellucci, S., Pulcini, F., Santilli, F., Sorice, M. & Simona, D.M. 2021. Regenerative potential of DPSCs and revascularization: Direct, paracrine or autocrine
effect? Stem Cell Reviews and Reports 17(5): 1635-1646.
Mazzarini, M., Falchi, M., Bani, D. & Anna, R.M. 2020. Evolution and new frontiers
of histology in bio‐medical research. Microscopy Research & Technique 84(2): 217-237.
Mbagwu, S.I. & Filgueira, L. 2020. Differential expression of CD31
and von Willebrand Factor on endothelial cells in different regions
of the human brain: Potential implications for cerebral malaria pathogenesis.
Brain Sciences 10(1): 31.
McKinnon, K.M. 2018. Flow cytometry: An overview. Curr. Protoc. Immunol. 120: 5.1.1-5.1.11.
Mo, Y., Wan, R. & Zhang, Q. 2012. Application of
reverse transcription-PCR and real-time PCR in nanotoxicity research. Methods
in Molecular Biology 926: 99-112.
Mortada, I. & Mortada, R. 2018. Dental pulp stem cells and
osteogenesis: An update. Cytotechnology 70(5): 1479-1486.
Nguyen, P.K., Nag, D. & Wu, J.C. 2010. Methods to assess
stem cell lineage, fate and function. Advanced Drug Delivery Reviews 62(12): 1175-1186.
Niu, G. & Chen, X. 2010. Vascular endothelial growth factor as an
anti-angiogenic target for cancer therapy. Curr. Drug Targets 11(8): 1000-1017.
Nur Syahidah Nor
Hisam, Azizah Ugusman, Nor Fadilah Rajab, Karina Di Gregoli, Mohd Faizal Ahmad & Nur Najmi
Mohamed Anuar 2023. Navitoclax mediates Interleukin-3 induced human umbilical vein
endothelial cells survival and angiogenesis.
PREPRINT (Version 1) Research Square. https://doi.org/10.21203/rs.3.rs-2759691/v1
Ogata, K., Moriyama, M., Mayu, M.K., Tatsuya, K., Yano, A. & Nakamura, S. 2022. The therapeutic potential of secreted factors from
dental pulp stem cells for various diseases. Biomedicines 10(5): 1049.
Olver, T.D., Ferguson, B.S. & Laughlin, M.H. 2015. Molecular
mechanisms for exercise training-induced changes in vascular structure and
function: Skeletal muscle, cardiac muscle, and the brain. Prog. Mol. Biol. Transl. Sci. 135: 227-257.
Paula, A.B., Laranjo, M., Marto, C.M., Paulo, S., Abrantes, A.M., Fernandes, B., Casalta-Lopes, J., Marques-Ferreira, M., Botelho, M.F. & Carrilho, E. 2019. Evaluation of dentinogenesis inducer biomaterials: An in vivo study. J. Appl. Oral. Sci. 28: e20190023.
Pazhanisamy, S. 2013. Stem cell markers. Materials
and Methods 3: 200.
Peters, M.D.J., Godfrey, C., McInerney, P., Munn, Z., Tricco, A.C. & Khalil, H. 2020. Chapter 11: Scoping reviews. In JBI Manual for Evidence Synthesis, edited by Aromataris, E. & Munn, Z. JBI.
Ponce, M.L. 2001. In vitro matrigel
angiogenesis assays. Methods Mol. Med. 46: 205-209.
Prasad, M., Butler, W.T. & Qin, C. 2010. Dentin
sialophosphoprotein (DSPP) in
biomineralization. Connect
Tissue Res. 51(5): 404-417.
Quintero-Fabián, S., Arreola, R., Becerril-Villanueva, E., Torres-Romero, J.C., Arana-Argáez, V., Lara-Riegos, J., Ramírez-Camacho, M.A. & Alvarez-Sánchez, M.E. 2019. Role of matrix
metalloproteinases in angiogenesis and cancer. Front Oncol. 9: 1370.
Raica, M. & Cimpean, A.M. 2010. Platelet-derived growth
factor (PDGF)/PDGF receptors (PDGFR)
axis as target for antitumor and antiangiogenic therapy. Pharmaceuticals (Basel) 3(3): 572-599.
Rashid, B., Husnain, T. & Riazuddin, S. 2014.
Chapter 1 - Genomic approaches and abiotic stress tolerance in plants. In Emerging Technologies and Management of Crop Stress
Tolerance, edited by
Ahmad, P. & Rasool, S. Massachusetts: Academic Press. pp. 1-37.
Ravindran, S. & George, A. 2015. Dentin matrix proteins in bone tissue engineering. Adv. Exp. Med. Biol. 881: 129-142.
Roy, R., Yang, J. & Moses, M.A. 2019. Matrix
metalloproteinases as novel biomarker s and potential therapeutic targets in
human cancer. J. Clin. Oncol. 27(31): 5287-5297.
Saghiri, M.A., Asatourian, A., Sorenson, C.M.
& Sheibani, N. 2015. Role of angiogenesis in
endodontics: Contributions of stem cells and proangiogenic and antiangiogenic
factors to dental pulp regeneration. J. Endod. 41(6): 797-803.
Sakamoto, S., Putalun, W., Vimolmangkang, S., Phoolcharoen, W., Shoyama, Y., Tanaka, H.
& Morimoto, S. 2017. Enzyme-linked immunosorbent
assay for the quantitative/qualitative analysis of plant secondary metabolites. J. Nat. Med. 72(1): 32-42.
Sasaki, J., Zhang, Z., Min, J.O., Andrea-Mantesso, P., Satoshi, I., Shi, S. & Nör, J.E. 2020. VE-Cadherin and
anastomosis of blood vessels formed by dental stem cells. Journal of Dental
Research 99(4): 437-445.
Shibuya, M. 2011. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR)
signaling in angiogenesis: A crucial target for anti- and pro-angiogenic
therapies. Genes & Cancer 2(12): 1097-1105.
Sidney, L.E., Branch, M.J., Dunphy, S.E., Dua, H.S. & Hopkinson, A. 2014. Concise review: Evidence for CD34 as a
common marker for diverse progenitors. Stem Cells 32(6): 1380-1389.
Singh, K., Miaskowski, C., Dhruva, A.A., Flowers, E. & Kober, K.M. 2018. Mechanisms
and measurement of changes in gene expression. Biol. Res. Nurs. 20(4): 369-382.
Sivadas, V.P., Rahul, D.P. & Nair, P.D. 2021. Chapter 5 - Multipotent nature of dental
pulp stem cells for the regeneration of varied tissues – A personalized medicine approach. In Regenerated Organs, edited by
Sharma, C.P. Massachusetts: Academic Press. pp. 97-118.
Smith, A.J. & Sharpe, P.T. 2014. Chapter 70 - Biological tooth replacement
and repair. In Principles of Tissue Engineering (Fourth
Edition), edited by Lanza,
R., Langer, R. & Vacanti, J. Massachusetts: Academic Press. pp. 1471-1485,
Soudi, A., Yazdanian, M., Ranjbar, R., Tebyanian, H., Yazdanian, A., Tahmasebi, E., Keshvad, A. & Seifalian, A. 2021. Role and application of stem
cells in dental regeneration: A comprehensive overview. EXCLI J. 20: 454-489.
Staton, C.A., Reed, M.W. & Brown, N.J. 2009. A critical analysis
of current in vitro and in vivo angiogenesis assays. Int. J. Exp. Pathol. 90(3): 195-221.
Suamte, L., Tirkey, A., Barman, J. & Jayasekhar Babu, P.
2023. Various
manufacturing methods and ideal properties of scaffolds for tissue engineering
applications. Smart Materials in Manufacturing 1: 100011.
Suzuki, S., Naoto, H., Nishimura, F. & Kulkarni, A.B. 2012. Dentin sialophosphoprotein and dentin matrix
protein-1: Two highly phosphorylated proteins in mineralized tissues. Arch. Oral
Biol. 57(9): 1165-1175.
Swain, N., Thakur, M., Pathak, J. & Swain, B. 2020. SOX2,
OCT4 and NANOG: The core embryonic stem cell pluripotency regulators
in oral carcinogenesis. J. Oral Maxillofac. Pathol. 24(2): 368-373.
Tahergorabi, Z.
& Khazaei, M. 2012. A review on
angiogenesis and its assays. Iranian Journal of Basic Medical Science 15(6): 1110-1126.
Tanabe, S. 2015. Signaling involved in stem cell reprogramming and differentiation. World J. Stem
Cells 7(7): 992-998.
Thomas, N.V., Manivasagan, P. & Kim, S.K. 2014. Potential matrix
metalloproteinase inhibitors from edible marine algae: A review. Environ. Toxicol. Pharmacol. 37(3): 1090-1100.
Thottappillil, N.
& Nair, P.D. 2015. Scaffolds in vascular
regeneration: current status. Vascular Health and Risk Management 11: 79-91.
Tien, N., Lee, J-J., Lee, A.K-X., Lin, Y.H., Chen,
J-X., Kuo, T-Y. & Shie, M-Y. 2021. Additive
manufacturing of caffeic acid-inspired mineral trioxide
aggregate/poly-ε-caprolactone scaffold for regulating vascular induction
and osteogenic regeneration of dental pulp stem cells. Cells 10(11): 2911.
Staniowski, T., Zawadzka-Knefel, A. & Skośkiewicz-Malinowska, K. 2021. Therapeutic potential of dental pulp stem cells according to different
transplant types. Molecules 26(24): 7423.
Tricco, A.C., Lillie, E., Zarin, W., O'Brien, K.K., Colquhoun, H., Levac, D., Moher, D., Peters, M.D.J., Horsley, T., Weeks, L., Hempel, S., Akl, E.A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M.G., Garritty, C., Lewin, S., Godfrey, C.M., Macdonald, M.T., Langlois, E.V., Soares-Weiser, K., Moriarty, J., Clifford, T., Tunçalp, Ö. & Straus, S.E. 2018. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine 169(7): 467-473.
Tsai, M.H., Megat Abdul Wahab, R., Zainal Ariffin, S.H., Azmi, F. & Yazid, F. 2023. Enhanced osteogenesis
potential of MG-63 cells through sustained delivery of VEGF via liposomal
hydrogel. Gels 9(7): 562.
Wang, X. & Khalil, R.A. 2018. Matrix metalloproteinases,
vascular remodeling, and vascular disease. Adv. Pharmacol. 81: 241-330.
Wang, Z., Gerstein, M. & Snyder, M. 2009. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 10(1): 57-63.
Weinhardt, V., Chen, J.H., Ekman,
A.,
McDermott, G., Le Gros, M.A. & Larabell, C. 2019. Imaging cell morphology and physiology using X-rays. Biochem. Soc. Trans. 47(2): 489-508.
Xia, K., Chen, Z., Chen, J., Xu, H., Xu, Y., Yang, T. & Zhang, Q. 2020. RGD- and VEGF-mimetic peptide
epitope-functionalized self-assembling peptide hydrogels promote dentin-pulp
complex regeneration. International Journal of Nanomedicine 15: 6631-6647.
Yamakoshi, Y. 2009. Dentinogenesis and
dentin sialophosphoprotein (DSPP). Journal of Oral Biosciences 51(3): 134-142.
Yamakoshi, Y. 2008. Dentin sialophosphoprotein (DSPP) and dentin. Journal of Oral Biosciences 50(1): 33-44.
Yuan, S.M., Yang, X., Zhang,
S.,
Tian, W. & Yang, B. 2022. Therapeutic potential of dental pulp stem cells and their derivatives:
Insights from basic research toward clinical applications. World Journal of
Stem Cells 14(7): 435-452.
Zakrzewski, W., Dobrzyński, M., Szymonowicz, M.
& Rybak, Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10(1): 68.
Zielińska, A., Karczewski, J., Eder, P., Kolanowski, T., Szalata, M., Wielgus, K., Szalata, M., Kim, D., Shin, S.R., Słomski, R. & Souto, E.B. 2023. Scaffolds for
drug delivery and tissue engineering: The role of genetics. Journal of Controlled Release 359: 207-223.
Zhang, M., Jiang, F., Zhang, X., Wang, S., Jin, Y., Zhang, W.
& Jiang, X. 2017. The effects of platelet-derived growth factor-BB on
human dental pulp stem cells mediated dentin-pulp complex regeneration. Stem
Cells Translational Medicine 6(12): 2126-2134.
Zhang, Z., Oh, M., Sasaki, J. & Nör, J.E. 2021. Inverse
and reciprocal regulation of p53/p21 and Bmi-1 modulates vasculogenic
differentiation of dental pulp stem cells. Cell Death and Disease 12(7): 644.
*Pengarang untuk
surat-menyurat; email: drfarinawati@ukm.edu.my
|